organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Nitrophenyl)-1,3-dithiane

Hoong-Kun Fun,^a* Reza Kia,^a Annada C. Maity^b and Shvamaprosad Goswami^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India Correspondence e-mail: hkfun@usm.my

Received 14 January 2009; accepted 14 January 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.024; wR factor = 0.061; data-to-parameter ratio = 34.7.

The nitro group in the title compound, $C_{10}H_{11}NO_2S_2$, is almost coplanar with the benzene ring, making a dihedral angle of $3.42(8)^{\circ}$. The 1,3-dithiane ring adopts a chair conformation. The crystal structure is stabilized by intermolecular $C-H \cdots O$ and C-H··· π [C···Cg = 3.4972 (10) Å] interactions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For the calculation of ring puckering parameters, see: Cremer & Pople (1975). For related literature and applications see, for example: Goswami & Maity (2008); Fun et al. (2009).

Experimental

Crystal data

$C_{10}H_{11}NO_2S_2$
$M_r = 241.32$
Orthorhombic, P212121
a = 8.7724 (1) Å
b = 10.2079 (1) Å
c = 11.9942 (1) Å

V = 1074.05 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.47 \text{ mm}^{-1}$ T = 100.0 (1) K 0.46 \times 0.22 \times 0.08 mm

Data collection

```
Bruker SMART APEXII CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\min} = 0.813, T_{\max} = 0.964
```

Refinement

$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
Absolute structure: Flack (1983),
2050 Friedel pairs
Flack parameter: 0.01 (4)

30643 measured reflections

 $R_{\rm int} = 0.038$

4725 independent reflections

4511 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline C6-H6A\cdots O2^{i} \\ C1-H1A\cdots Cg1^{ii} \end{array}$	0.93	2.59	3.3346 (12)	137
	0.97	2.60	3.4972 (10)	154

Symmetry codes: (i) $-x + \frac{5}{2}, -y, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$. Cg1 is the centroid of the benzene ring

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/ PFIZIK/613312. ACM and SG acknowledge the DST (grant No. SR/S1/OC-13/2005), Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. The authors also thank the Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2357).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. P. (2009). Acta Cryst. E65, 0173
- Goswami, S. P. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092-3096.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2009). E65, o348 [doi:10.1107/S1600536809001809]

2-(4-Nitrophenyl)-1,3-dithiane

H.-K. Fun, R. Kia, A. C. Maity and S. Goswami

Comment

Thioacetal protection of carbonyl groups is of paramount importance in synthetic organic chemistry and hence, the development of novel thionation reactions remains of great interest (Goswami & Maity, 2008; Fun *et al.*, 2009). In addition, thioacetals are also utilized as masked acyl anions or masked methylene functions in carbon-carbon bond forming reactions. Herein, we report the synthesis of 2-(4-nitro-phenyl)-[1,3]-dithiane (I) from 4-nitrobenzaldehyde using boron trifluoride etherate catalyst.

Compound (I), Fig. 1, comprises a single molecule in the asymmetric unit. The nitro group is almost coplanar with the benzene ring, making a dihedral angle of 3.42 (8)°. The thiacyclohexane ring adopts a chair conformation with the ring puckering parameters (Cremer & Pople, 1975) of Q = 0.7137 (8) Å, $\Theta = 173.96$ (7)°, and $\Phi = 135.6$ (7)°. The crystal structure is stabilized by intermolecular C—H···O and C—H···T interactions, Table 1.

Experimental

To a stirred dichloromethane (50 mL) solution, maintained at 273 K, of 4-nitrobenzaldehyde (500 mg, 3.31 mmol) and boron trifluoride etherate (0.5 mL) was added dropwise 1,3-propanedithiol (450 mg, 4.1 mmol) over 15 min. The mixture was stirred at room temperature for 4 h and the progress of the reaction monitored by TLC. After completion of the reaction, NaHCO₃ solution was added carefully at room temperature to neutralize the mixture which was then extracted with dichloromethane. The organic layer was dried (anhydrous Na₂SO₄) and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 10% ethyl acetate in petroleum ether as eluant to afford (I) (674 mg, 84%) as a colourless crystalline solid along with the other thiane derivatives.

Refinement

All hydrogen atoms were positioned geometrically and refined with a riding model approximation with C—H = 0.93-0.98 Å, and with U_{iso} (H) = 1.2 U_{eq} (C).

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

2-(4-Nitrophenyl)-1,3-dithiane

Crystal data	
$C_{10}H_{11}NO_2S_2$	$F_{000} = 504$
$M_r = 241.32$	$D_{\rm x} = 1.492 {\rm Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 9979 reflections
a = 8.7724 (1) Å	$\theta = 2.6 - 38.5^{\circ}$
b = 10.2079 (1) Å	$\mu = 0.47 \text{ mm}^{-1}$
c = 11.9942 (1) Å	T = 100.0 (1) K
$V = 1074.054 (18) \text{ Å}^3$	Block, colourless
Z = 4	$0.46 \times 0.22 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	4725 independent reflections
Radiation source: fine-focus sealed tube	4511 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 100.0(1) K	$\theta_{\text{max}} = 35.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -14 \rightarrow 14$
$T_{\min} = 0.813, T_{\max} = 0.964$	$k = -16 \rightarrow 16$
30643 measured reflections	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_o^2) + (0.0321P)^2 + 0.1305P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.061$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
4725 reflections	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
136 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2050 Friedel pairs
C 1	Γ_{1} 1 σ_{1} σ_{2} σ_{1} σ_{2} σ_{1} σ_{1} σ_{1} σ_{2}

Secondary atom site location: difference Fourier map Flack parameter: 0.01 (4)

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.78978 (3)	0.06239 (2)	0.216265 (18)	0.01399 (5)
S2	1.07695 (3)	0.22170 (2)	0.261209 (18)	0.01492 (5)
01	0.99728 (9)	0.26901 (8)	-0.32568 (6)	0.01819 (14)
O2	1.12536 (10)	0.08795 (8)	-0.33808 (6)	0.02137 (15)
N1	1.05536 (9)	0.17161 (8)	-0.28383 (7)	0.01391 (13)
C1	0.80248 (11)	0.03483 (9)	0.36543 (8)	0.01526 (16)
H1A	0.7009	0.0182	0.3941	0.018*
H1B	0.8631	-0.0431	0.3785	0.018*
C2	0.87227 (11)	0.14837 (10)	0.43022 (8)	0.01481 (15)
H2A	0.8157	0.2276	0.4135	0.018*
H2B	0.8618	0.1312	0.5094	0.018*
C3	1.03975 (11)	0.17104 (11)	0.40367 (8)	0.01636 (17)
H3A	1.0954	0.0907	0.4182	0.020*
H3B	1.0790	0.2376	0.4538	0.020*
C4	0.99151 (10)	0.08515 (9)	0.18616 (7)	0.01235 (15)
H4A	1.0463	0.0046	0.2055	0.015*
C5	1.01013 (10)	0.11049 (9)	0.06296 (7)	0.01189 (14)
C6	1.09657 (10)	0.02450 (9)	-0.00171 (7)	0.01299 (15)
H6A	1.1440	-0.0468	0.0318	0.016*
C7	1.11247 (10)	0.04450 (9)	-0.11583 (8)	0.01293 (15)
H7A	1.1690	-0.0131	-0.1593	0.016*
C8	1.04185 (10)	0.15252 (9)	-0.16301 (7)	0.01169 (14)
C9	0.95653 (11)	0.24152 (9)	-0.10131 (8)	0.01406 (16)
H9A	0.9114	0.3138	-0.1351	0.017*
C10	0.94071 (11)	0.21912 (9)	0.01268 (7)	0.01455 (15)
H10A	0.8836	0.2768	0.0558	0.017*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Alomic displacement burumeters (A	ic displacement parameters (\AA^2)
-----------------------------------	--------------------------------------	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01279 (8)	0.01716 (10)	0.01201 (9)	-0.00234 (7)	-0.00105 (7)	-0.00003 (8)
S2	0.01512 (9)	0.01748 (10)	0.01216 (9)	-0.00450 (7)	0.00056 (7)	-0.00083 (7)
01	0.0228 (3)	0.0179 (3)	0.0138 (3)	0.0016 (3)	-0.0017 (3)	0.0050 (3)
O2	0.0286 (4)	0.0219 (4)	0.0136 (3)	0.0056 (3)	0.0052 (3)	-0.0013 (3)
N1	0.0149 (3)	0.0152 (3)	0.0117 (3)	-0.0013 (3)	0.0008 (3)	0.0010 (3)

supplementary materials

C1	0.0167 (4)	0.0169 (4)	0.0121 (4)	-0.0023 (3)	0.0021 (3)	0.0002 (3)
C2	0.0148 (4)	0.0183 (4)	0.0113 (4)	-0.0002 (3)	0.0016 (3)	-0.0019 (3)
C3	0.0147 (4)	0.0236 (4)	0.0108 (4)	-0.0019 (3)	-0.0012 (3)	-0.0010 (3)
C4	0.0133 (3)	0.0137 (4)	0.0100 (3)	0.0006 (3)	-0.0004 (3)	0.0001 (3)
C5	0.0127 (3)	0.0127 (3)	0.0103 (3)	0.0002 (3)	-0.0003 (3)	0.0006 (3)
C6	0.0142 (4)	0.0128 (3)	0.0120 (3)	0.0023 (3)	0.0001 (3)	0.0017 (3)
C7	0.0130 (3)	0.0134 (4)	0.0124 (3)	0.0009 (3)	0.0007 (3)	-0.0006 (3)
C8	0.0130 (3)	0.0131 (4)	0.0090 (3)	-0.0012 (3)	0.0005 (3)	0.0008 (3)
C9	0.0169 (4)	0.0130 (4)	0.0123 (4)	0.0025 (3)	0.0000 (3)	0.0015 (3)
C10	0.0182 (4)	0.0139 (4)	0.0116 (3)	0.0034 (3)	0.0007 (3)	0.0000 (3)

Geometric parameters (Å, °)

S1—C1	1.8145 (9)	С3—Н3В	0.9700
S1—C4	1.8210 (9)	C4—C5	1.5090 (12)
S2—C3	1.8148 (10)	C4—H4A	0.9800
S2—C4	1.8208 (9)	C5—C6	1.3953 (13)
01—N1	1.2248 (10)	C5—C10	1.4016 (13)
O2—N1	1.2368 (11)	C6—C7	1.3910 (13)
N1—C8	1.4670 (11)	С6—Н6А	0.9300
C1—C2	1.5238 (13)	C7—C8	1.3855 (12)
C1—H1A	0.9700	С7—Н7А	0.9300
C1—H1B	0.9700	C8—C9	1.3905 (13)
С2—С3	1.5210 (13)	C9—C10	1.3930 (13)
C2—H2A	0.9700	С9—Н9А	0.9300
C2—H2B	0.9700	C10—H10A	0.9300
С3—НЗА	0.9700		
C1—S1—C4	98.95 (4)	C5—C4—S1	108.74 (6)
C3—S2—C4	99.98 (4)	S2—C4—S1	113.56 (5)
01—N1—O2	123.46 (8)	C5—C4—H4A	108.8
01—N1—C8	118.63 (8)	S2—C4—H4A	108.8
O2—N1—C8	117.91 (8)	S1—C4—H4A	108.8
C2-C1-S1	114.18 (6)	C6—C5—C10	119.65 (8)
C2—C1—H1A	108.7	C6—C5—C4	119.69 (8)
S1—C1—H1A	108.7	C10—C5—C4	120.66 (8)
C2-C1-H1B	108.7	C7—C6—C5	120.61 (8)
S1—C1—H1B	108.7	С7—С6—Н6А	119.7
H1A—C1—H1B	107.6	С5—С6—Н6А	119.7
C3—C2—C1	113.39 (8)	C8—C7—C6	118.28 (8)
С3—С2—Н2А	108.9	С8—С7—Н7А	120.9
C1—C2—H2A	108.9	С6—С7—Н7А	120.9
С3—С2—Н2В	108.9	C7—C8—C9	122.91 (8)
C1—C2—H2B	108.9	C7—C8—N1	118.23 (8)
H2A—C2—H2B	107.7	C9—C8—N1	118.85 (8)
C2—C3—S2	114.47 (6)	C8—C9—C10	117.95 (8)
С2—С3—НЗА	108.6	С8—С9—Н9А	121.0
S2—C3—H3A	108.6	С10—С9—Н9А	121.0
С2—С3—Н3В	108.6	C9—C10—C5	120.59 (8)
S2—C3—H3B	108.6	C9—C10—H10A	119.7

supplementary materials

H3A—C3—H3B C5—C4—S2	107.6 107.96 (6)	C5—C10—H10A	119.7
C4—S1—C1—C2	60.04 (8)	C4—C5—C6—C7	178.61 (8)
S1—C1—C2—C3	-66.54 (10)	C5—C6—C7—C8	0.73 (13)
C1—C2—C3—S2	64.81 (10)	C6—C7—C8—C9	0.18 (14)
C4—S2—C3—C2	-57.45 (8)	C6—C7—C8—N1	-178.43 (8)
C3—S2—C4—C5	179.49 (6)	O1—N1—C8—C7	-177.77 (8)
C3—S2—C4—S1	58.85 (6)	O2—N1—C8—C7	2.17 (12)
C1—S1—C4—C5	-179.95 (6)	O1—N1—C8—C9	3.56 (12)
C1—S1—C4—S2	-59.74 (6)	O2—N1—C8—C9	-176.50 (9)
S2—C4—C5—C6	117.37 (8)	C7—C8—C9—C10	-0.79 (14)
S1—C4—C5—C6	-119.01 (8)	N1—C8—C9—C10	177.81 (8)
S2-C4-C5-C10	-63.01 (10)	C8—C9—C10—C5	0.50 (14)
S1-C4-C5-C10	60.60 (10)	C6—C5—C10—C9	0.38 (14)
C10-C5-C6-C7	-1.01 (14)	C4—C5—C10—C9	-179.24 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
C6—H6A···O2 ⁱ	0.93	2.59	3.3346 (12)	137
C1—H1A…Cg1 ⁱⁱ	0.97	2.60	3.4972 (10)	154
Symmetry codes: (i) $-x+5/2$, $-y$, $z+1/2$; (ii) $-x+3/2$, $-y$, $z+1/2$.				

